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Chapter One 

Introduction 

 A "Structures" refers to a system of connected parts used to support a load. 
Important examples related to civil engineering include buildings, bridges, and towers. In 
other branches of engineering such as ships, aircraft frames, tanks and pressure vessels, 
mechanical systems, and electrical supporting structures are Important. 

Types of structures 

1- Ties: These are structural members that are subjected to axial tension only. 

 

 

 

 

  

 

2- Struts (Columns): These are structural members that are subjected to axial 
compression only. 
 
 
 
 
 
 
 
 

3- Beams: These are usually straight horizontal members subjected to transverse 
loading and hence to bending moment and shear force at each normal section.     
 
 
 
 

4- Trusses: these are structures which consist of members which are pin-connected at 
each terminal. These members usually form one or more triangles in a single plan 
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and are so arranged that the external loads at the joints and hence each member is 
subjected to direct force and is a tie or a strut.   

 

 

 

 

5-  Frames:  these are structures which have moment-resisting joints. The members are 
rigidly connected at their ends so that no joint translation is possible (i. e. the 
members at a joint may rotate as a group but may not move with respect to each 
other). The members are subjected to axial and lateral loadings and hence to shear 
force, bending moments and axial load at each normal section. 
 
 
 
 
 
 
 
 

Types of loads  

 Loads can be classified as being "dead loads" and "live loads". 

1- Dead loads: these are loads of constant magnitude that remain in one position. They 
consist of the structural frames own weight and other loads that are permanently 
attached to the frame. For a steel-frame building, some dead loads include the 
frame, walls, and floor. 

2- Live loads:  live loads are loads that may change in position and magnitude. Live 
loads that move under their own power are said to be "moving loads", such as 
tracks, people, and cranes whereas those loads that may be moved are movable 
loads such as furniture, goods, and snow. Examples of live loads to be considered 
include: traffic loads for bridges, Impact loads.    
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Types of support 

Structures may be supported by hinges, rollers, fixed ends, or links; 

1- A "hinge" or pin-type support prevents movement in the horizontal and vertical 
direction but does not prevent rotation about the hinge. There are two unknown 
forces at a hinge. 
 
 
 
 
 
 

2- A "roller" type of support is assumed to offer resistance to movement only in a 
direction perpendicular to the supporting surface beneath the roller. There is no 
resistance to rotation about the roller or to movement parallel to the supporting 
surface. The magnitude of the force required to prevent movement perpendicular to 
the supporting surface is the one unknown. 

 

 

 

 

 

 

 

 

 

 

3- A "fixed" support is assumed to offer resistance to rotation about the support and to 
movement vertically and horizontally. There are three unknowns. 
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4- A "link" type of support is similar to the roller in its action. The line of action of 
the supporting force must be in the direction of the link and through the two pins. 
One unknown is present: the magnitude of the force in the direction of the link. 

 

  

 

Equations of Equilibrium 

 The equations of equilibrium for a force system in the xy-plane are; 

 = 0        = 0    = 0 

 The third equation is the algebraic sum of the moments of all the forces about z-axis 
and passes through some arbitrary point O. For complete equilibrium in two dimensions, 
all three of the independent equations must be satisfied. 

The   equilibrium equations can also be expressed in two alternative forms; 

 = 0        = 0      = 0 

 = 0      = 0    = 0     

where the points a, b, and c are not lay on the same line 

Example (1): Calculate the reactions for the beam shown. 
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Equations of Conditions 

 The beam shown in the figure below has an internal “hinge” built in it at point b.  

 

 

 

 

 

 

 

 

 

 

 

No bending moment can be transmitted through the beam at point b. From the free-
body diagram for the two segments of the beam, it is shown that there are two internal 
components of force at point b, one parallel to the axis of the beam ( F ) and one there 
perpendicular to the axis ( V ). Since no moment is transmitted through the hinge, the 
equation ∑ Mb = 0 can be imposed for the two individual free-body diagrams. The one 
independent equation introduced by the condition of construction is referred to as 
Equation of Condition.  

 In the figure below, there are two equations of condition due to presence of roller at 
point b. 
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Example (1): Calculate the reactions for the beam illustrated. 

 

 

 

 

 

 

Example (2): Determine the reactions for the two-member frame shown in the figure 
below. 
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Determinacy and Stability 

Determinacy 

The equilibrium equations provide both the "necessary and sufficient" conditions for 
equilibrium when all the forces in a structure can be determined from these equations, the 
structure is referred to as "statically determinate". Structures having more unknown forces 
than available equilibrium equations are called "statically indeterminate". For a coplanar 
structure there are at most "three" equilibrium equations for each part, so that if there is a 
total of " n " parts and " r " internal force and moment reaction components, we have; 

  --------------------- Eq. (1) 

The above equation used for beams and frames.  

At the same time, we can use the equations of conditions to find the indeterminacy 
of beams as bellow; 

  --------------------- Eq. (2) 

where  R: No. of reactions. 
  3: No. of equations of equilibrium. 
           c: No of equations of conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
In the presence of equations of condition in frames, we can use the Eq. (3) to fined 

the determinacy as bellow, 

P 

By using Eq. 1 
r = 8 , n = 2 
8 ? 3(2) 
 8 > 6  statically indeterminate to the second 

degree 
Or by using Eq. 2  
R = 6 , c = 1  
6 ? 3+1 
6 > 4 statically indeterminate to the second 

degree 

P 

By using Eq. 1 
r = 3 , n = 1 
 3 ?  3(1)  
3 = 3(1) 
statically determinate 
Or by using Eq. 2  
R = 3, c = 0  
3 ? 3+0 
3 = 3 statically determinate 
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  --------------------- Eq. (3) 

Where   m: No. of members  
    j: No. of joints 

      c: No of equations of conditions and equals to i-1, where i is the number of 
members meeting at that joint 

 

In particular if a structure is statically indeterminate, additional equations needed to 
solve. 
 

Stability 

A structure will become "unstable"(i.e. it will move slightly or collapse) if there are 
fewer reactive forces than available equations (Equations of equilibrium and conditions 
if any).  

 

 

 

If there are enough reactions, instability will occur if the lines of action of the 
reactive forces intersect at a common point, or are parallel to one another (Geometric 
instability). The geometric instability may be occurred in the case of incorrect 
arrangement of members and supports. 

 

 

 

 

 

 

 

 

P 

r  = 2 , n = 1 
2 < 3(1)  Unstable 

P 

r  = 3 , n = 1, Eq. 1 
3 ? 3(1) 
3 = 3   geometric unstable due 

to parallel reaction  
r  = 3 , m=2, j = 1, c = 0, Eq. 2 
3(2)+3 ? 3(3)+0 
9 = 9     geometric unstable,  
            ∑moment 0 

P 
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Example (1): Classify each of the beams shown in figure as statically determinate or 
statically indeterminate. 

 

 

 

 

 

 

 

 

 

Example (2): Classify each of the pin-connected structures as statically determinate or 
statically indeterminate. 
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r  = 6 , n = 2, Eq. 1 
6 ? 3(2)   
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            ∑moment 0 



Theory of Structures  
 

Example (3): Classify each of frames shown as statically determinate or statically 
indeterminate. 
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Chapter Two 

Internal Loadings Developed in Structural Members  

  

The internal load at a specified point in a member can be determined by using the 
"method of sections". In general, this loading for a coplanar structure will consist of a 
normal force " N ", shear force " V ", and bending moment " M ". Once the resultant of 
internal loadings at any section are known, the magnitude of the induced stress on that 
section can be determined. 

Sign Convention 

On the "left-hand face" of the cut member in Fig. (a), the normal force " N " acts to 
the right, the internal shear force " V " acts downward, and the moment " M " acts 
counterclockwise. In accordance with Newton’s third law, an equal but opposite normal 
force, shear force, and bending moment must act on the right-hand face of the member at 
the section.  

Isolate a small segment of the member; positive normal force tends to elongate the 
segment, Fig. ( b ); positive shear tends to rotate the segment clockwise, Fig. ( c ); and 
positive bending moment tends to bend the segment concave upward, Fig. ( d ). 
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Shear Force and Bending Moment Diagrams for a Beam 

Plots showing the variations of V and M along the length of a beam are termed; 
Shear Forces Diagram (SFD) and Bending Moment Diagram (BMD), respectively. 

Relationships between Load, Shear Force and Bending Moment 

Consider the beam AD , shown in Fig. (a), which is subjected to an arbitrary 
distributed loading w = w (x). The distributed load is considered positive when the loading 
acts upward. 

 

 

 

 

 

 

 

Applying the equations of equilibrium for the free-body diagram of a small segment 
of the beam having a length Δx. 

∑Fy = 0;    V + w(x).Δx - (V+ ΔV) =0 

                ΔV = w(x).Δx 

∑MO= 0;   -V.Δx –M - w(x). Δ  + (M+ ΔM) = 0 

               Since the term  w(x). Δ   is very small and can be neglected;     

  So, ΔM = V.Δx 

Taking the limit as  Δx 0;  

   = w(x)      -------- (2.1) 

   = V       -------- (2.2) 
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 Equation (2.1) states that "the slope of the shear diagram at a point (  ) is equal to 
the intensity of the distributed load w(x) at that point". 

Likewise, Eq. (2.2) states that "the slope of the moment diagram (  )  is equal to 
the intensity of the shear at that point". 

From one point to another, in which case; 

 

 

 Equation (2.3) states that "the change in the shear between any two points on a 
beam equals the area under the distributed loading diagram between those two points". 

   Likewise, Eq. (2.4) states that "the change in the moment between any two points 
on a beam equals the area under the shear diagram between those two points". 

 

 Example (1): Draw the shear force and bending moment diagrams for the simply 
supported beam subjected to a concentrated load as shown in the figure below. 

 

 
 
 
 
 
 
 

Example (2): Draw the shear force and bending moment diagrams for the simply 
supported beam subjected to a uniformly distributed load of intensity “ w “, as shown in 
the figure below. 
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Example (3): Draw the shear force and bending moment diagrams for the simply 
supported beam subjected to a concentrated moment as shown in the figure below. 

 

 
 
 
 
 

Example (4): Draw the shear force and bending moment diagrams for the simply 
supported beam subjected to a linearly varying load, as shown in the figure below. 

 
 
 
 
 
 

Example (5): Draw the shear force and bending moment diagrams for the overhang beam 
subjected to a linearly varying load, as shown in the figure below. 

 
 
 
 
 
 
 

Example (6): Draw the shear force and bending moment diagrams for the double 
overhang beam subjected to a linearly varying load, as shown in the figure below. 
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Moment Diagrams by the Method of Superposition  

Using the principle of  superposition, each of the loads can be treated separately and 
the moment diagram can then be constructed in a series of parts rather than a single and 
sometimes complicated shape. This can be particularly useful when applying geometric 
deflection methods to determine both the deflection of abeam and the reactions on a 
statically indeterminate beams. 
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Shear and Moment Diagrams for a Frame 

To draw the shear force and bending moment diagrams for a frame, it is first 
required to determine the reactions at the frame supports. Then, using the method of 
sections, we find the axial force, shear force, and moment acting at the ends of each 
member. All the loadings are resolved into components acting parallel nd perpendicular to 
the member's axis. 

The sign convention followed will be to draw the bending moment diagram 

 

Example (1): The frame shown in the figure is pinned at a and supported on a roller at d. 
For the loading indicated:  

i- Determine the support reactions. 
ii- Draw the axial load, shear force, and bending moment diagrams.  
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Example (2): Determine the support reactions and draw the axial force, shear force, and 
bending moment diagrams for the frame shown in the figure below. 
 

 

 

 

 

 

 

Example (3): |The frame shown in the figure below is fixed at ( a ) and hinged at ( d ) and 
has two internal hinges ( h1 ) and ( h2 ). From the loading indicated: 

i- Determine the support reactions. 
ii- Draw the axial force, shear force, and bending moment diagrams. 

 

 

 

 

 

Example (4): |The frame shown in the figure below is subjected to a uniform vertical load 
of 12kN/m of the horizontal.  

i- Determine the support reactions. 
ii- Draw the axial force, shear force, and bending moment diagrams. 
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Chapter Three 

Analysis of Statically Determinate Trusses 

  

A truss is defined as a structure formed by group of members arranged in the shape 
of one or more triangles.  

Because the members are assumed to be connected with frictionless pins, the 
triangle is the only stable shape. Figures of the four or more sides are not stable and may 
collapse under load. 

 

 

 

 

 

Assumptions for Truss analysis: 

1- Truss members are connected together with frictionless pins. 
2- Truss members are straight. 
3- The deformations of truss under load are of small magnitude and do not cause 

changes in the overall shape and dimensions of the truss. 
4- Members are so arranged that the loads and reactions are applied only at the truss 

joints. 
 

Determinacy and Stability of Trusses 

For any problem in truss analysis, the total member of unknowns equals (b+r), 
where; 

b: is the forces in the bars and   

r: is number of external reactions. 

Since the members are all straight axial force members lying in the same plane, the 
force system acting at each joint is "Coplanar and concurrent". Consequently, rotational 
or moment equilibrium is automatically satisfied at each joint and it is only necessary to 

P P P 
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satisfy ∑Fx = 0 and ∑Fy = 0 to insure translational or force equilibrium. Therefore, only 
two equations of equilibrium can be written for each joint, and if there are " j " numbers of 
joints, the total number of equations available for solution are " 2j ". 

By comparing the total number unknowns (b + r) with the total number of available 
equilibrium equations, we have: 

 b + r = 2j    Statically determinate 

          b + r ˃ 2j    Statically indeterminate 

          b + r ˂ 2j    Unstable {Truss will collapse, since there will be an insufficient number 
of bars or reactions to constrain all the joints} 

 

 
b + r ? 2j 
6 + 3 ? 2 × 5 
9 = 10      Unstable. 
 
 
 
 
 
b + r ? 2j 
7 + 3 ? 2 × 5 
10 = 10    Unstable {points a, b, and c at the same line} 
 
 
 
 
 
 
b + r ? 2j 
7 + 3 ? 2 × 5 
10 = 10     Unstable {parallel reactions}  
 
 
 
 

c a b 
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b + r ? 2j 
7 + 3 ? 2 × 5 
10 = 10    statically determinate. 
 
 
 
 
 
m + r ? 2j 
8 + 4? 2 × 5 
12 > 10    statically indeterminate to the second degree. 
 
 
 
m + r ? 2j 
6 + 4? 2 × 5 
10 > 10    Unstable (internal geometric instability due 

to the lack of lateral resistance in panel 
abcd) 

The method of Joints 

If a truss is in equilibrium, then each of its joints must also be in equilibrium. 
Hence, the method of joints consists of satisfying the equilibrium conditions ∑Fx = 0 and 
∑Fy= 0 for the forces exerted on the pin at each joint of the truss.  

Special Conditions 
1- If in any truss, there be a joint at 

which only three bars meet and 
two of these bars lies along the 
same straight line, then the force in 
the third bar is zero, provided that 
there is no external force applied.  

  ΣYi = 0                F3 = 0 

           ΣXi = 0               F1 = F2 
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b 
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2- Since two forces can be in 
equilibrium only if they are equal, 
opposite, and collinear, we 
conclude that the forces in any two 
bars, their axes is not collinear, are 
equal to zero if there is no external 
force applied at their joint.  
ΣXi = 0                 F2 = 0 
ΣX\

i = 0                 F1 = 0 
 
  
 
 
 
 

3- ΣXi = 0                F3 = F5 
ΣX\

i = 0                 F1 = F2 
 

  

  

 

Example (1): Calculate the member forces, Fab, Fac, Fbd, Fcd, Fce, Fde, and Fdf using the 
method of joints. 
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The method of Sections 

If the forces in only a few members of a truss are to be found, the method of 
sections generally provides the most direct means of obtaining these forces. The "method 
of sections" consists of passing an "imaginary section" through the truss, thus cutting it 
into two parts. Provided the entire truss is in equilibrium, each of the two parts must also 
be in equilibrium; and as a result, the three equations of equilibrium may be applied to 
either one of these two parts to determine the member forces at the "cut section". 

 

Example (2): Calculate the member forces, Fdf, Fde, and Fce for the truss of the previous 
example using the method of sections. 

 

Example (3): Calculate all the member forces for the truss given in the figure below. 
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Chapter Four 

Approximate Analysis of Statically Indeterminate Structures 

 

Approximate methods of analysis are methods by which statically indeterminate 
structures are reduced into determinate structures, through the use of certain assumption. 
The determinate structure is then solved by equations of statics. 

A- Trusses 
 
 

 

 

 

 

 

 Consider the above truss which has two diagonals in each panel. The truss is 
statically indeterminate to the third degree. It can be noticed that if a diagonal is removed 
from each of the three panels, it will render the truss statically determinate 

b = 16 , r = 3, and j =8; hence  

b + r ? 2 j    ; 16 + 3 > 16 

Therefore, we must make three assumptions regarding the bar forces in order to 
reduce the truss to one that is statically determinate. These assumptions can be made with 
regard to the cross-diagonals, realizing that when one diagonal in a panel is in tension the 
corresponding cross-diagonal will be in compression. 

Two methods of analysis are generally acceptable; 

Method (1): If the diagonals are intentionally designed to be long and slender, it is 
reasonable to assume that they cannot support a compressive force; otherwise, they may 
easily buckle. Hence the panel shear is resisted entirely by the tension diagonal, whereas 
the compressive diagonal is assumed to be a zero-force member. 



 

Method (2): If the diagonal members are intended to be constructed from large rolled 
sections such as angles or channels, they may be equally capable of supporting a 
tensile and compressive force. Here we will assume that the tension and compression 
diagonals each carry half the panel's shear. 

Example: Determine approximately the forces in the members of the truss shown in 
figure. (i) If the diagonals are constructed from large rolled sections to support both 
tensile and compressive forces. (ii) If the diagonals con not support compressive force. 

 

 

 

  
 

Solution: 

Since b = 11, r = 3, and j = 6 
So, the truss is statically indeterminate to the second degree.  

i) From the whole truss, using the Eqs. of equilibrium 
∑MF = 0    Rc= 10kN  
∑FY = 0    RFy = 20kN 
∑FX = 0    RFX = 0 
 

 

 

The two assumptions require the tensile and compression diagonals to carry equal 
forces, i.e. FFB = FAE = F. For  a vertical  section through the left panel 

∑FY = 0  20 - 10 - 2F ( ) = 0 
 F = 8.33kN   , hence FAE = 8.33 kN (C) and FFB = 8.33kN (T)  
∑MF = 0  FAB × 3 - FAE ( ) × 3 = 0 

                    FAB × 3 - 8.33× ( ) × 3 = 0 ; FAB = 6.67 kN (T) 

∑MA = 0  FFE × 3 + FFB ( ) × 3 = 0 

                    FFE × 3 + 8.33× ( ) × 3 = 0 ; FFE = - 6.67 kN (C) 



 

Assume a vertical section through the right panel 
∑FY = 0  10 - 2F ( ) = 0  ; F = 8.33kN   ,  
               hence FBD = 8.33 kN (T)  and   FEC = 8.33kN (C)  
∑MD = 0  FBC × 3 - FEC ( ) × 3 = 0 

                    FBC × 3 - 8.33× ( ) × 3 = 0 ;  FBC = 6.67 kN (T) 

∑MC = 0  FED × 3 + FBD ( ) × 3 = 0 

                    FED × 3 + 8.33× ( ) × 3 = 0 ; FED = - 6.67 kN (C) 
 
Using F.B.D. of joints D, E, and F ; 

∑FY = 0  FDC + 8.33× ( ) = 0  ; FDC = -5 kN (C)   
 

 

 

∑FY = 0  FEB - 2×8.33 ( ) = 0  ; FEB = 10 kN (T) 

 

 

 

∑FY = 0  20 - FAF - 8.33 ( ) = 0  ; FAF = 15 kN (T) 

 

 
 
 

ii) If the diagonals cannot support a compressive force ; 

Assume a vertical section through the left panel 
FAE = 0 
∑FY = 0  20 - 10 - FFB ( ) = 0 
      FFB = 16.67kN (T)    
                                       
∑MF = 0  FAB × 3  = 0   ;  FAB = 0 



 

 
∑MA = 0  FFE × 3 + FFB ( ) × 3 = 0 

                   FFE × 3 + 16.67 ( ) × 3 = 0 ; FFE = -13.33kN (C) 
 
Assume a vertical section through the right panel 
FEC = 0 

∑FY = 0  10 - FBD ( ) = 0 ; FBD = 16.67 kN (T)  
 
∑MD = 0  FBC × 3 = 0  ; FBC  = 0 
 
∑FX = 0  FED + FBD ( ) = 0 

                 FED + 16.67× ( ) = 0  ; FED = - 13.33 kN (C) 
 
 
Using F.B.D. of joints D, E, and F ; 

∑FY = 0  FDC + 16.67× ( ) = 0  ; FDC = -10 kN (C)   
 

 

 

 

∑FY = 0  FEB = 0 

 

 

 

 

∑FY = 0  20 - FAF - 16.67 ( ) = 0  ; FAF = 10 kN (T) 

 

 

 



 

B- Vertical Loads on Building Frames  
Consider a typical girder located within a building, Fig. (1), bent and subjected to a 

uniform vertical load, as shown in Fig. (2). The column supports at A and B will each 
exert three reactions on the girder, and therefore the girder will be statically indeterminate 
to the third degree (6 reactions – 3 equations of equilibrium). To make the girder statically 
determinate, an approximate analysis will therefore require three assumptions. If the 
columns are extremely stiff, no rotation at A and B will occur, and the deflection curve for 
the girder will look like that shown in Fig. (3). For this case, the inflection points (Points 
of zero moments) occur at 0.21L from each support.  

 

 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
If, however, the column connections at A and B are very flexible, then like a simply 

supported beam, zero moment will occur at the supports, Fig. (4).  
In reality, however, the columns will provide some flexibility at the supports, and 

therefore we will assume that zero moment occurs at the "average point" between the two 
extremes,   from each support, Fig. (5). 

 
 
 

Fig. (1) 

Fig. (2) Fig. (3) 



 

 
 
 
 
 
 
 
 
 
 
In summary then, each girder of length " L " may be modeled by a simply supported 

span of length 0.8L resting on two cantilevered ends, each having a length of ( 0.1L ) , Fig. 
(6). The following three assumptions are incorporated in this model; 

 1- There is zero moment in the girder, 0.1L from the left support. 
 2- There is zero moment in the girder, 0.1L from the right support. 
 3- The girder does not support an axial force. 
 
 
 
 
 
 
 
 
 
 

Example: Determine (approximately) the shear force and bending moments for the girders 
of the building frame shown in figure below. 
 

 
 
 
 
 
 
 
 
 

Fig. (4) Fig. (5) 

Fig. (6) 
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Solution: 
As the span lengths and loads for the four girders are the same, the approximate 

shear and bending moment diagrams for the girders will also be the same. 
The inflection points are assumed to occur in the beam at ( 0.1L = 0.6m), the middle 

portion of the girder, which has a length of (0.8L = 4.8m), is simply supported on the two 
end portions, each of length 0.6m. 
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8.1kN.m 8.1kN.m 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

A.F.D (kN) 

30kN 

15kN 

30kN 

15kN 30kN 

60kN 

 

 
 

 

 

 

15kN 

15kN 

15kN 

2×15= 30kN 
4×15= 60kN 2×15= 30kN 

×8.1 2= 16.2kN 16.2kN 

15kN 

15kN 15kN 15kN 

15kN 15kN 

8.1kN.m 

8.1kN.m 

8.1kN.m 

8.1kN.m 

8.1kN.m 

8.1kN.m 

8.1kN.m 

8.1kN.m 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S.F.D (kN) 

15kN 

15 

+ 

- 

15kN 

15kN 15kN 

+ 

- 

15kN 

15kN 15kN 

+ 

- 

+ 

- 

14.4kN.m 

8.1 
8.1 

- - 8.1kN.m 

B.M.D (kN.m) 

14.4kN.m 

14.4kN.m 14.4kN.m 

- 

16.2kN.m 16.2kN.m 

8.1kN.m 8.1kN.m 

- 

- 

    - 

- 

+ + 

+ + 

- 
8.1 



 

C- Lateral Loads on Building Frames  
Portal Method: 

The behavior of rectangular building frame is different under lateral (horizontal) 
loads than under vertical loads, so different assumptions must be used. 

A method commonly used for the approximate analysis of relatively low building 
frames is the "Portal Method".  

A building frame defects as shown in figure below, 
 
 
 
 
 
 
 
 
 
Therefore, it is appropriate to assume inflection points occur at the center of the 

columns and girders. 
If we consider the frame to be composed of a series of portal, then as a further 

assumption, the interior columns would represent the effect of two portal columns and 
would therefore carry twice the shear ( V ) as the two exterior columns. 

In summary, the portal method requires the following assumptions; 
1- A hinge is placed at the center of each girder, since this is assumed to be a point of 

zero moment. 
2- A hinge is placed at the center of each column, since this is assumed to be a point of 

zero moment. 
3- At a given floor level, the shear at the interior columns is twice that at the exterior 

columns. 
Example: Use the portal method to determine the external reactions, and draw the axial 
load, shear force, and bending moment diagrams for the frame shown in figure. 
 
 
 
 
 

 
 

 

  

 



 

Solution: 
i- Simplified frame: The simplified frame for approximate analysis is obtained by 

inserting internal hinges at the midpoints of all members of the given frame. 
ii- Column shears: The shear in the interior column BE is assumed to be twice as much as 

in the exterior columns AD and CF.  
By separating the frame into to two parts at the midpoint of the columns (upper and 
lower) where the hinges were assumed. From shear forces of the upper part   

  
 
 
 

 
 
 

∑Fx = 0  

 
Shear forces at the upper ends of the columns are obtained by applying ∑Fx = 0  to 

the free body of each column, 

 



 

 
 
 

 
 
 
 
 

iii- Column moments: The column end moment moments can be computed using Eq. 
of ∑M=0 about lower and upper end of the columns, 

MAD = MCF = MDA = MEC =  15×4 = 60kN.m (       )       
 
MBE = MEB = 30×4 = 120kN.m  (     )       
 
iv- Girder axial forces, moments, and hear:  

 
 
 
 
 
 

For Girder DE, 
Using equation of  ∑Fx = 0  60-HED-15=0    HED = 45kN 
∑Mh1 = 0 (for left part)  VDE × 5+60 =0    VDE = -12kN.m 
∑FY = 0  -12+VED=0    VED = 12kN 
∑Mh1 = 0 (for right part)  12 × 5- MED =0    MED = 60kN.m 

For Girder EF, 
Using equation of  ∑Fx = 0  45-HFE-30=0    HFE = 15kN 

 



 

∑FY = 0  -12+VFE=0    VFE = 12kN 
∑Mh2 = 0 (for left part)  -12 × 5+MEF =0    MEF = 60kN.m 
∑Mh2 = 0 (for right part)  12 × 5-MFE =0    MFE = 60kN.m 
 

v- Column axis:  
 
Using ∑FY = 0 
 
VA – 12 = 0 
VA = 12 kN 
 

and , Vc = 12 kN 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 
 

 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

Chapter Five 

Influence Lines for Statically Determinate Structures 

 An "influence line" is a diagram showing the change in the values of a particular 
function (reaction, member axial force, internal shear, or bending moment) as a unit 
concentrated load moves across the structure. 

Influence lines play an important role in the design of bridges, industrial crane, 
conveyors, and other structures where loads move across their span. 

An influence line is constructed by placing a unit load at a 'variable position x" on 
the member and then computing the value of reactions, shear force, or bending moment at 
the point as a function of x. 

In this manner, the equations of the various line segments composing the influence 
line can be determined and plotted. 

Consider the simply supported beam shown in figure. 
 

 

 

 

 

 

 

 

If the influence line for the reaction at point " a "is required, a single concentrated 
load is moved across the span from point " a " to " b ", and the reaction at point " a " is 
calculated. Placing the unit load at a typical position located at distance " x " from point  
" a " and summing moments about point " b " gives; 

∑Mb = Ra.(L)-(1)(L-x) = 0 

                    "Straight line" 

When the load is positioned at the left reaction ( x = 0 ), the value of Ra is a unity. 
As the load moves across the span and reaches mid-span ( x = L/2 ), the diagram shows 
that Ra equals 0.5  .  When the unit load is at the right support ( x = L ) Ra equals zero. 

  

 
  

 
 

  

 

  

 

 
 

 



 

Influence Lines for Beams 
For beams, we are interested in the influence lines for the reactions, as well as the 

change in the internal quantities in the beams as the loading moves across the structure. 
Therefore, influence lines for the shear and moment at a specific cross-section must also 
be constructed for beam structures. 

In order to do so, it is necessary to make an imaginary cut through the beam at the 
point of interest and then compute the value of the shear and moment at this cross-section 
as the unit concentrated load traverses the beam. 

For the simply supported beam discussed in the previous section, the influence line 
for the reaction at point " b " can also be obtained by placing the unit load at a typical 
point on the beam and summing moments about point " a ", giving  

 
∑Ma = Rb.(L)-(1)(x) = 0 

                    "Straight line" 

 

 

 

 

 

 

 

 

 

 

It is of interest to note that the sum of the influence ordinates for Ra and Rb is ( 1 ) 
for a given " x " value of their respective influences lines. Summation of forces in the 
vertical direction     Ra + Rb -1 = 0 

Hence, Ra + Rb =1 

  

 
  

 

 

 

 
 

 

 

 

 

 

 
 



 

To obtain the influence line for shear and moment at point " c " as the  
unit load moves across the beam, the free-body diagrams are drawn for    0 ≤ x ˂ L/4  and  
L/4 ˂ x ≤ L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) is correct if the unit load is located between points " a " and " c ", and 
Fig. (2) is valid for the load situated between points " c " and " b ". 

From the left part of Fig. (1), the expression for shear force is given as;  

Vc = -1 + Ra = -1 +  =                   0 ≤ x ˂ L/4          ------------- (5-1) 
 

Alternatively, the right hand part 

Vc = - Rb =                                            0 ≤ x ˂ L/4          ------------- (5-2) 
 

 
 

  

  

 

 

 

 
0 ≤ x ˂ L/4 

 

  

  

  

  

 L/4 < x ≤ L 
 



 

Either of the above equations can be used to construct the influence line for Vc for 
the segment from " a " to " c" 

As the unit load traverses the segment from points " c " to " b ", Fig (2) is used to 
investigate the shear at section " c ". 

Using the left part;  

Vc = Ra =                                               L/4 ˂  x ≤ L          ------------- (5-3) 
 

The right-hand part;  

Vc = 1 – Rb = 1 -  =                         L/4 ˂  x ≤ L          ------------- (5-4) 
 

 

 

 

 

 

 

 

 

 

To obtain the moment influence line for the beam it is necessary to write expression 
for the moment at point " c " as the unit concentrated load is positioned at all locations on 
the span. 

For the load positioned between points " a " and ' c " ; 

Mc = Ra ( ) - (1) (  - x) 

= ( )( ) - (  =  -  + x =                 0 ≤ x ≤  

and  

  

 
  

 

 

 

 

 

 

 



 

Mc = Rb ( ) = ( ) ( ) =                    0 ≤ x ≤  

 

As the load goes from point " c " to " b " ; 

Mc = Ra ( )  = ( )( ) =                   ≤ x ≤ L 

and  

Mc = Rb ( ) – (1) (x - ) = .( ) – (1) (x - ) 

      =  - x +  =                         ≤ x ≤ L 

 

 

 

 

 

 

 

 

 

Example (1): Draw the influence lines for Ra, Ma, Vb, and Mb for the cantilever beam. 

 

 

 

 

 

 

 

  

 
  

 

 

 

 

 
 

   



 

Solution 

∑Fy = 0 

∑Ma = 0  Ma = -1x 

when the load moves from " a " to " b " 

Vb = Ra – 1= 1-1=0 

Mb = 3.6Ra + Ma – 1(3.6-x) = 3.6 -1x – 3.6 + x = 

      = 0 

when the load moves from " b " to " c " 

Vb = Ra = 1 

Mb = 3.6Ra + Ma = 3.6×1 –x = 3.6 – x  

at x = 3.6  Mb = 3.6 - 3.6 = 0 

at x = 6    Mb =3.6 – 6 = -2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

   

 

 

  

  

 

 

 

 

  

 

 

 

  

  

 
 

 

 

 

  

  



 

Example (2): Draw the influence lines for Ra, Rc, Vb, Mb, Mc, Vc-, Vc+ (the shear to the 
left and right of point " c " , respectively)  

Solution 

∑Ma = 0    Rc =  

∑Mc = 0    Ra =  

From Fig. (1); 

For the load between " a " and " b " 

Vb = Ra – 1 = -Rc = -  

Mb = 6Ra – 1(6 - x) = 4Rc =  

For the load between " b " and " d " 

Vb = Ra = 1 - Rc =   

Mb = 6Ra = 4Rc – (x - 6) =   

From Fig. (2); 

For the load between " a " and " c " 

Vc - = Ra – 1 = -Rc = -  

Vc + = 0 

Mc = 10Ra – (10 - x) = 10 ×   - (10 – x) = 0 

For the load between " c " and " d " 

Vc - = Ra =   

Vc + = 1 

Mc = 10Ra = 10 ×    = (10 – x)  

 

 

  

 
 

  

 
 

 
 

 

  

    

 

 
 

   

 

  
 

  
 

 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example (3): Draw the influence lines for Ra, Rd, Rf, Vb, Mb, Ve , Me for the beam 
illustrated.  

 

  

 

 

 

 

 

 
 

  

 
 

     

  

 

   



 

Solution 

For the load between " a " and 
" c ";  

∑Mc = 0  

4Ra – (4-x) = 0   Ra =   

` 

∑Mf = 0   

20Ra – (20-x) + 12 Rd = 0 

20 ( ) – (20-x) + 12 Rd = 0 

    Rd =   

∑Fy = 0   

Ra + Rf + Rd -1 = 0 

 + Rf +   -1 = 0 

                      Rf = -  

For the load between " c " and 
" f ";  

∑Mc = 0  

   Ra  = 0   

 

∑Mf = 0   

20Ra – (20-x) + 12 Rd = 0 

0 – (20-x) + 12 Rd = 0 

                        Rd =   

 

 
 

 

 

 

     

  

 

   

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 



 

∑Fy = 0   

Ra + Rf + Rd -1 = 0 

 + Rf +   -1 = 0 

                      Rf =  

Influence lines for Vb and Mb 

For the load between  “ a “ and “ b “ ; 

Vb  = Ra -1 =  – 1  

     = - (Rd + Rf ) =    

Mb  = 2Ra -1(2-x) =  (6 Rd +18Rf)  

       = 2 ×  – (2-x) =   

For the load between  “ b “ and “ c “ ; 

Vb  = Ra = 1- (Rd + Rf ) =    

Mb  = 2Ra = (6 Rd +18Rf) – (x – 2)  =    

 

For the load between  “ c “ and “ f “ ; 

Vb  = Ra = 1- (Rd + Rf ) = 0 

Mb  = 2Ra = (6 Rd +18Rf) – (x – 2)  = 0 

 

Influence lines for Ve and Me 

For the load between  “ a “ and “ c“ ; 

Ve  = Ra +Rd -1 = - Rf =   



 

Me  = 16Ra + 8Rd - 1(16 - x) = 4 Rf = -    

For the load between  “ c “ and “ e “ ; 

Ve  = Ra +Rd -1 = - Rf = -    

Me  = 16Ra + 8Rd - 1(16 - x) = 4 Rf =     

 

For the load between  “ e “ and “ f “ ; 

Ve  = Ra +Rd = 1- Rf =    

Me  = 16Ra + 8Rd = 4 Rf – 1 (x – 16) = 8 (  ) 

 

 

  



 

Relationship of Influence Lines and Structural Loading 
Influence lines are used to investigate the effect of the actual load moving across the 

structure. 
i- Concentrated Force:  

If a single concentrated force of magnitude " P " moves across a beam, the effect of 
the load is obtained by simply placing it at a given location " x " , and multiplying the 
influence line ordinate IL (x1)at that point by the magnitude of the load " P " 

F = IL (x1) P 
Where " F " is the value of the function of interest-reaction, shear, bending moment 

, etc. 
ii- Distributed load  

If a distributed load q(x) is applied over a portion of a structure, its effect can also 
be calculated using the influence ordinates. 

 For a portion of the influence line shown in 
figure;  

dF = IL (x) q(x) dx 
Integrating  
 

F =  

=  
If the loading is uniformly distributed  

(q = const.), the value of the function is  
F = q   
The integral in the above equation represents the area under the influence line 

between points xa and xb  . 
The following statements are made about the relationships between influence lines 

and structural loading: 
1- The effect of concentrated load can be obtained by multiplying the value of the load by 

the influence ordinate where the load is positioned. 
2- The greatest magnitude of a function, e.g.  reaction, due to a concentrated load exists 

when the load is positioned on the structure where influence line has the largest 
ordinate. 

3- The effect of uniformly distributed load is obtained by multiplying the area under the 
influence line (between the points where the load is distributed) by the values of the 
distributed loading.



 

4- The greatest magnitude of a function, e.g. reaction, due to uniformly distributed load of 
constant value and variable length is obtained by placing the loading over those portions 
of the influence line which have ordinates of the same sign. 

 
Example (1): The beam in example (2) of the previous section has the illustrated loading 
applied to the structure. The uniformly distributed part of the load is a variable length. 
Calculate the largest positive and negative values of Vb and Mb due to this loading. 
 
 

 

 

 

Solution 

(Vb)+ Max = 100(0.4) +  (0.4) (4)(10)  

                = 48kN 

(Vb)- Max = 100(- 0.6) +  (- 0.6) (6)(10) 

                    +  (- 0.4) (4)(10) = - 86 kN 

 
 
 
 

(Mb)+ Max = 100(2.4) +  (2.4) (10)(10)  

                = 360kN.m 

 

(Mb)- Max = 100(-2.4) +  (-2.4) (4)(10)  

                = - 288kN.m 

 
 

 
 

 

  

 

  

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

Example (2): The beam in example (3) of the previous section is loaded with a standard 
H20 (M18) high way wheel loading as shown. Using the influence lines developed 
previously, calculate the largest values of Ra, Ve, (negative), and Me (positive).  
 
 
 
 
 
solution 

 
(Rd)Max = 144(1.33)  
              + 36  
           = 191.52 + 35.11 = 226.63kN 
 
 
 
 
 
(Ve)- Max = 144(-0.67) 
                 + 36  
            = -96.48 -11.25 = -107.73kN 
  
 
 
 
 
(Me)+ Max = 144(2.67) 

                +36  
              = 384.48 + 44.85  
              = 429.33kN.m 
 
 
 
 
 
 

  
 

 
 

 

   

 

 

 

 

   

     

    

 
 

  
 

 



 

Influence Lines for Trusses 
Trusses are frequently loaded with moving loads as in the case of bridges. In order 

to design individual truss members, it is necessary to know the largest tensile or 
compressive force they must sustain as the loading moves across the structure. 

 
 

 
For the typical bridge truss shown in Figure above, the loading on the bridge deck is 

transmitted to stringers, which in turn transmit the loading to floor beams and then to the 
points along the bottom cord of the truss. Thus the trusses in this case will be loaded only 
at points where the floor beams attached to the bottom cord of the truss. These points are 
termed " joints "  or " panel points " . 

 
  



 

Example (1): Draw the influence lines for the members; ab, ac, bc, be, ce, and bd for the 
truss shown. 
 
Solution 

∑Mh = 0 [ for whole truss ]  Ra =  

∑Ma = 0  [ for whole truss ]  Rh =  

 
Influence lines for Fab and Fac 
From F.B.D. for Joint " a " 
when the load at joint " a "  
Ra = 1  ;  
Hence Fab  = Fac = 0 
 
when the load between  
" c " and " h "; 
∑Fy = 0  

Fab ×  + Ra= 0  

 Fab = -  Ra   

∑Fx = 0   Fab + Fac = 0  

     Fac = -  Fab 

 
 
 
 
 
Influence lines for Fbc and Fce  
From F.B.D. for Joint " c " 
when the load at joint " c " 
∑Fy = 0 Fbc = 1 
when the load at any   
joint except " c " 
Fbc = 0 



 

when the load at any joint 
∑Fx = 0 Fac = Fce 
Influence lines for Fbe and Fbd 
From F.B.D. for Joint " b " 
when the load between joint " 
a " and " h " 

∑Fy = 0 Fab + Fbc + Fbe = 0 

         Fbe = -  ( Fab + Fbc) 

 

∑Fx = 0 Fab + Fbe + Fbd = 0 

Fbd = Fab - Fbe  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

Example (2): The truss has the vehicle load applied to the bottom panel points. Draw the 
influence lines for reactions Ra, Rg, ab, ac, bc, bd, cd, and ce. 
 
Solution 
For the whole truss  

∑Mg = 0 [ for whole truss ]  Ra =  

∑Ma = 0  [ for whole truss ]  Rg =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For section 1-1 
when the load at joint " a " 
∑Mc = 0 [ for right part] 
4Rg + 2Fbd = 0  Fbd = -2Rg = 0 
∑Mb = 0 [ for right part] 

5Rg - 2Fac = 0  Fac =  Rg  = 0 

∑Fy = 0 [ for right part] 

Rg + Fbc = 0  Fbc = -   Rg = 0 

 



 

when the load between " c " and " g " 
∑Mc = 0 [ for left part] 

2Ra + 2Fbd = 0  Fbd = - Ra  = -   

∑Mb = 0 [ for left part] 

Ra - 2Fac = 0  Fac =  =   

∑Fy = 0 [ for left part] 

Ra - Fbc = 0  Fbc =  Ra =  (6 - x) 

 
For section 2-2 
when the load between " a " and " c "  
∑Md = 0 [ for right part] 

3Rg - 2Fce = 0  Fce =  Rg =   

∑Fy = 0 [ for right part] 

Rg - Fcd = 0  Fcd =   Rg =  

 
when the load between " e " and " g "  
∑Md = 0 [ for left part] 

3Ra - 2Fce = 0  Fce =  Ra =   

∑Fy = 0 [ for left part] 

Ra + Fcd = 0  Fcd = -  Ra = -  

Influence lines for Fab  
From F.B.D. for Joint " a " 
when the load at joint " a "  
Ra = 1  ;  
Hence Fab  = Fac = 0 
 
when the load between " c " and " g " ; 
∑Fy = 0  

Fab ×  + Ra= 0   Fab = -  (6-x) 

 



 

Moving Loads on Beams 
Large vehicles, such as trucks or 

Lorries moving on a beam, impose a series 
of concentrated loads separated by fixed 
distances. 

In order to design the beam, it is necessary to know the maximum shear and 
moment caused by the loads. This is possible only if it is known where the loading should 
be placed on the beam to cause maximum effect. 

 
Absolute Maximum Moment in a Beam 

For the beam subjected to a series of concentrated loads, the bending moment 
diagram consists of straight lines forming a polygon. Therefore, the section for maximum 
moment must be under one of the loads. 

Consider a series of concentrated 
loads; P1, P2, P3, and P4 separated by fixed 
distances, moving on a beam as shown in 
the figure. 

Suppose it is required to find the 
position of the section under the load P3 in 
which maximum bending moment occurs. 

Assuming a position of the loads such that the load under P3 is at a distance " x " 
from R1. 

 Let R = ∑Pi  be the resultant of the loads and " e " its distance from P3, such that; 
 

e =  
The bending moment at the section under P3 is; 
M3 = R1.x – P1 (a + b) – P2.b 
 
From ∑M = 0 about R2 

R1 =  (L – e – x) 

Therefore,  

M3 =  (L – e – x).x – P1 (a + b) – P2.b 

For maximum value of M3; 

 =  (L – e – 2x) = 0 

L 

P1 P2 P3 P4 

R1 R2 

R=∑Pi 

a 

e x 

c b 



 

(L – e – 2x) = 0 

x =  -  

This means that the section for maximum bending 
under the load P3 is when the loads are positioned such 
that the beam centerline is at the midpoint between P3 
and the resultant of the loads.  

As a general rule, though, the absolute maximum 
moment often occurs under the largest force lying 
nearest the resultant force of the system. 
 
Absolute Maximum Shear 
For a simply supported beam, the shear force is maximum at the ends (near the reactions). 
Therefore, it is necessary to maximize these reactions by positioning the loads as close as 
possible.     

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Example: Three wheel loads move on a beam of span 30m as shown in figure. Find the 
absolute maximum moment and shear for the beam. 
 
 
 
 
 
 
 

Loading position for max. R1 

Loading position for max. R2 

P1 P2 P3 P4 

R1 R2 

x 

x 

30m 

a b 

16kN 40kN 24kN 
5m 10m 

P3 
R=∑Pi 

x e/2 e/2 

P1 P2 P3 P4 

R1 R2 

x 

x 



 

Solution 
The resultant of the applied load is 

between wheel ( 2 ) and ( 3 ) 
R = 16+40+24 = 80kN 

To find the distance " y " from 
wheel (3) to the resultant, hence; 

y  =  = 8m  

The maximum moment will occur under wheel ( 2 ).  
According to the criterion for absolute 

maximum moment, the wheel ( 2 ) and the 
resultant should be placed equidistant from the 
centerline of the beam. 
   

Ra =  = 37.33kN 

Rb = 80-37.33 = 42.67kN 
Mmax. = Ra × 14 -16 × 5  
          = 37.33 × 14 - 80 = 442.62 kN.m 
 
 
 

 
 
 
 

The maximum shear will occur near a 
reaction and is obtained by positioning the 
wheels as shown. 

Thus with resultant as close as 
possible to one support and all wheels on the 
structure; 

Vmax. = Ra =  = 61.33kN 

30m 

a b 

16kN 40kN 24kN 
5m 10m 

e = 2m 
80kN 

15m 
Ra Rb 

a 

16kN 40kN 
5m 

15m 
Ra 

14m 

30m 

a b 

16kN 40kN 24kN 

80kN 
7m 

Ra Rb 

16kN 40kN 24kN 
5m 10m 

1 2 3 

80kN 

y 2m 


